Added programming exercise 1 (Week 3)
This commit is contained in:
commit
ec7434e9a1
BIN
NNML1/dataset1.mat
Normal file
BIN
NNML1/dataset1.mat
Normal file
Binary file not shown.
BIN
NNML1/dataset2.mat
Normal file
BIN
NNML1/dataset2.mat
Normal file
Binary file not shown.
BIN
NNML1/dataset3.mat
Normal file
BIN
NNML1/dataset3.mat
Normal file
Binary file not shown.
BIN
NNML1/dataset4.mat
Normal file
BIN
NNML1/dataset4.mat
Normal file
Binary file not shown.
160
NNML1/learn_perceptron.m
Normal file
160
NNML1/learn_perceptron.m
Normal file
|
@ -0,0 +1,160 @@
|
|||
%% Learns the weights of a perceptron and displays the results.
|
||||
function [w] = learn_perceptron(neg_examples_nobias,pos_examples_nobias,w_init,w_gen_feas)
|
||||
%%
|
||||
% Learns the weights of a perceptron for a 2-dimensional dataset and plots
|
||||
% the perceptron at each iteration where an iteration is defined as one
|
||||
% full pass through the data. If a generously feasible weight vector
|
||||
% is provided then the visualization will also show the distance
|
||||
% of the learned weight vectors to the generously feasible weight vector.
|
||||
% Required Inputs:
|
||||
% neg_examples_nobias - The num_neg_examples x 2 matrix for the examples with target 0.
|
||||
% num_neg_examples is the number of examples for the negative class.
|
||||
% pos_examples_nobias - The num_pos_examples x 2 matrix for the examples with target 1.
|
||||
% num_pos_examples is the number of examples for the positive class.
|
||||
% w_init - A 3-dimensional initial weight vector. The last element is the bias.
|
||||
% w_gen_feas - A generously feasible weight vector.
|
||||
% Returns:
|
||||
% w - The learned weight vector.
|
||||
%%
|
||||
|
||||
%Bookkeeping
|
||||
num_neg_examples = size(neg_examples_nobias,1);
|
||||
num_pos_examples = size(pos_examples_nobias,1);
|
||||
num_err_history = [];
|
||||
w_dist_history = [];
|
||||
|
||||
%Here we add a column of ones to the examples in order to allow us to learn
|
||||
%bias parameters.
|
||||
neg_examples = [neg_examples_nobias,ones(num_neg_examples,1)];
|
||||
pos_examples = [pos_examples_nobias,ones(num_pos_examples,1)];
|
||||
|
||||
%If weight vectors have not been provided, initialize them appropriately.
|
||||
if (~exist('w_init','var') || isempty(w_init))
|
||||
w = randn(3,1);
|
||||
else
|
||||
w = w_init;
|
||||
end
|
||||
|
||||
if (~exist('w_gen_feas','var'))
|
||||
w_gen_feas = [];
|
||||
end
|
||||
|
||||
%Find the data points that the perceptron has incorrectly classified
|
||||
%and record the number of errors it makes.
|
||||
iter = 0;
|
||||
[mistakes0, mistakes1] = eval_perceptron(neg_examples,pos_examples,w);
|
||||
num_errs = size(mistakes0,1) + size(mistakes1,1);
|
||||
num_err_history(end+1) = num_errs;
|
||||
fprintf('Number of errors in iteration %d:\t%d\n',iter,num_errs);
|
||||
fprintf(['weights:\t', mat2str(w), '\n']);
|
||||
plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history);
|
||||
key = input('<Press enter to continue, q to quit.>', 's');
|
||||
if (key == 'q')
|
||||
return;
|
||||
end
|
||||
|
||||
%If a generously feasible weight vector exists, record the distance
|
||||
%to it from the initial weight vector.
|
||||
if (length(w_gen_feas) ~= 0)
|
||||
w_dist_history(end+1) = norm(w - w_gen_feas);
|
||||
end
|
||||
|
||||
%Iterate until the perceptron has correctly classified all points.
|
||||
while (num_errs > 0)
|
||||
iter = iter + 1;
|
||||
|
||||
%Update the weights of the perceptron.
|
||||
w = update_weights(neg_examples,pos_examples,w);
|
||||
|
||||
%If a generously feasible weight vector exists, record the distance
|
||||
%to it from the current weight vector.
|
||||
if (length(w_gen_feas) ~= 0)
|
||||
w_dist_history(end+1) = norm(w - w_gen_feas);
|
||||
end
|
||||
|
||||
%Find the data points that the perceptron has incorrectly classified.
|
||||
%and record the number of errors it makes.
|
||||
[mistakes0, mistakes1] = eval_perceptron(neg_examples,pos_examples,w);
|
||||
num_errs = size(mistakes0,1) + size(mistakes1,1);
|
||||
num_err_history(end+1) = num_errs;
|
||||
|
||||
fprintf('Number of errors in iteration %d:\t%d\n',iter,num_errs);
|
||||
fprintf(['weights:\t', mat2str(w), '\n']);
|
||||
plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history);
|
||||
key = input('<Press enter to continue, q to quit.>', 's');
|
||||
if (key == 'q')
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
%WRITE THE CODE TO COMPLETE THIS FUNCTION
|
||||
function [w] = update_weights(neg_examples, pos_examples, w_current)
|
||||
%%
|
||||
% Updates the weights of the perceptron for incorrectly classified points
|
||||
% using the perceptron update algorithm. This function makes one sweep
|
||||
% over the dataset.
|
||||
% Inputs:
|
||||
% neg_examples - The num_neg_examples x 3 matrix for the examples with target 0.
|
||||
% num_neg_examples is the number of examples for the negative class.
|
||||
% pos_examples- The num_pos_examples x 3 matrix for the examples with target 1.
|
||||
% num_pos_examples is the number of examples for the positive class.
|
||||
% w_current - A 3-dimensional weight vector, the last element is the bias.
|
||||
% Returns:
|
||||
% w - The weight vector after one pass through the dataset using the perceptron
|
||||
% learning rule.
|
||||
%%
|
||||
w = w_current;
|
||||
num_neg_examples = size(neg_examples,1);
|
||||
num_pos_examples = size(pos_examples,1);
|
||||
for i=1:num_neg_examples
|
||||
this_case = neg_examples(i,:);
|
||||
x = this_case'; %Hint
|
||||
activation = this_case*w;
|
||||
if (activation >= 0)
|
||||
w = w-x
|
||||
end
|
||||
end
|
||||
for i=1:num_pos_examples
|
||||
this_case = pos_examples(i,:);
|
||||
x = this_case';
|
||||
activation = this_case*w;
|
||||
if (activation < 0)
|
||||
w = w+x
|
||||
end
|
||||
end
|
||||
|
||||
function [mistakes0, mistakes1] = eval_perceptron(neg_examples, pos_examples, w)
|
||||
%%
|
||||
% Evaluates the perceptron using a given weight vector. Here, evaluation
|
||||
% refers to finding the data points that the perceptron incorrectly classifies.
|
||||
% Inputs:
|
||||
% neg_examples - The num_neg_examples x 3 matrix for the examples with target 0.
|
||||
% num_neg_examples is the number of examples for the negative class.
|
||||
% pos_examples- The num_pos_examples x 3 matrix for the examples with target 1.
|
||||
% num_pos_examples is the number of examples for the positive class.
|
||||
% w - A 3-dimensional weight vector, the last element is the bias.
|
||||
% Returns:
|
||||
% mistakes0 - A vector containing the indices of the negative examples that have been
|
||||
% incorrectly classified as positive.
|
||||
% mistakes0 - A vector containing the indices of the positive examples that have been
|
||||
% incorrectly classified as negative.
|
||||
%%
|
||||
num_neg_examples = size(neg_examples,1);
|
||||
num_pos_examples = size(pos_examples,1);
|
||||
mistakes0 = [];
|
||||
mistakes1 = [];
|
||||
for i=1:num_neg_examples
|
||||
x = neg_examples(i,:)';
|
||||
activation = x'*w;
|
||||
if (activation >= 0)
|
||||
mistakes0 = [mistakes0;i];
|
||||
end
|
||||
end
|
||||
for i=1:num_pos_examples
|
||||
x = pos_examples(i,:)';
|
||||
activation = x'*w;
|
||||
if (activation < 0)
|
||||
mistakes1 = [mistakes1;i];
|
||||
end
|
||||
end
|
||||
|
75
NNML1/plot_perceptron.m
Normal file
75
NNML1/plot_perceptron.m
Normal file
|
@ -0,0 +1,75 @@
|
|||
%% Plots information about a perceptron classifier on a 2-dimensional dataset.
|
||||
function plot_perceptron(neg_examples, pos_examples, mistakes0, mistakes1, num_err_history, w, w_dist_history)
|
||||
%%
|
||||
% The top-left plot shows the dataset and the classification boundary given by
|
||||
% the weights of the perceptron. The negative examples are shown as circles
|
||||
% while the positive examples are shown as squares. If an example is colored
|
||||
% green then it means that the example has been correctly classified by the
|
||||
% provided weights. If it is colored red then it has been incorrectly classified.
|
||||
% The top-right plot shows the number of mistakes the perceptron algorithm has
|
||||
% made in each iteration so far.
|
||||
% The bottom-left plot shows the distance to some generously feasible weight
|
||||
% vector if one has been provided (note, there can be an infinite number of these).
|
||||
% Points that the classifier has made a mistake on are shown in red,
|
||||
% while points that are correctly classified are shown in green.
|
||||
% The goal is for all of the points to be green (if it is possible to do so).
|
||||
% Inputs:
|
||||
% neg_examples - The num_neg_examples x 3 matrix for the examples with target 0.
|
||||
% num_neg_examples is the number of examples for the negative class.
|
||||
% pos_examples- The num_pos_examples x 3 matrix for the examples with target 1.
|
||||
% num_pos_examples is the number of examples for the positive class.
|
||||
% mistakes0 - A vector containing the indices of the datapoints from class 0 incorrectly
|
||||
% classified by the perceptron. This is a subset of neg_examples.
|
||||
% mistakes1 - A vector containing the indices of the datapoints from class 1 incorrectly
|
||||
% classified by the perceptron. This is a subset of pos_examples.
|
||||
% num_err_history - A vector containing the number of mistakes for each
|
||||
% iteration of learning so far.
|
||||
% w - A 3-dimensional vector corresponding to the current weights of the
|
||||
% perceptron. The last element is the bias.
|
||||
% w_dist_history - A vector containing the L2-distance to a generously
|
||||
% feasible weight vector for each iteration of learning so far.
|
||||
% Empty if one has not been provided.
|
||||
%%
|
||||
f = figure(1);
|
||||
clf(f);
|
||||
|
||||
neg_correct_ind = setdiff(1:size(neg_examples,1),mistakes0);
|
||||
pos_correct_ind = setdiff(1:size(pos_examples,1),mistakes1);
|
||||
|
||||
subplot(2,2,1);
|
||||
hold on;
|
||||
if (~isempty(neg_examples))
|
||||
plot(neg_examples(neg_correct_ind,1),neg_examples(neg_correct_ind,2),'og','markersize',20);
|
||||
end
|
||||
if (~isempty(pos_examples))
|
||||
plot(pos_examples(pos_correct_ind,1),pos_examples(pos_correct_ind,2),'sg','markersize',20);
|
||||
end
|
||||
if (size(mistakes0,1) > 0)
|
||||
plot(neg_examples(mistakes0,1),neg_examples(mistakes0,2),'or','markersize',20);
|
||||
end
|
||||
if (size(mistakes1,1) > 0)
|
||||
plot(pos_examples(mistakes1,1),pos_examples(mistakes1,2),'sr','markersize',20);
|
||||
end
|
||||
title('Classifier');
|
||||
|
||||
%In order to plot the decision line, we just need to get two points.
|
||||
plot([-5,5],[(-w(end)+5*w(1))/w(2),(-w(end)-5*w(1))/w(2)],'k')
|
||||
xlim([-1,1]);
|
||||
ylim([-1,1]);
|
||||
hold off;
|
||||
|
||||
subplot(2,2,2);
|
||||
plot(0:length(num_err_history)-1,num_err_history);
|
||||
xlim([-1,max(15,length(num_err_history))]);
|
||||
ylim([0,size(neg_examples,1)+size(pos_examples,1)+1]);
|
||||
title('Number of errors');
|
||||
xlabel('Iteration');
|
||||
ylabel('Number of errors');
|
||||
|
||||
subplot(2,2,3);
|
||||
plot(0:length(w_dist_history)-1,w_dist_history);
|
||||
xlim([-1,max(15,length(num_err_history))]);
|
||||
ylim([0,15]);
|
||||
title('Distance')
|
||||
xlabel('Iteration');
|
||||
ylabel('Distance');
|
Loading…
Reference in New Issue
Block a user