/* Copyright: © Copyright 2005 Apple Computer, Inc. All rights reserved. Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Computer, Inc. ("Apple") in consideration of your agreement to the following terms, and your use, installation, modification or redistribution of this Apple software constitutes acceptance of these terms. If you do not agree with these terms, please do not use, install, modify or redistribute this Apple software. In consideration of your agreement to abide by the following terms, and subject to these terms, Apple grants you a personal, non-exclusive license, under AppleÕs copyrights in this original Apple software (the "Apple Software"), to use, reproduce, modify and redistribute the Apple Software, with or without modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in its entirety and without modifications, you must retain this notice and the following text and disclaimers in all such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos of Apple Computer, Inc. may be used to endorse or promote products derived from the Apple Software without specific prior written permission from Apple. Except as expressly stated in this notice, no other rights or licenses, express or implied, are granted by Apple herein, including but not limited to any patent rights that may be infringed by your derivative works or by other works in which the Apple Software may be incorporated. The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*============================================================================= CAStreamBasicDescription.cpp =============================================================================*/ #include "CAConditionalMacros.h" #include "CAStreamBasicDescription.h" #include "CAMath.h" #if !defined(__COREAUDIO_USE_FLAT_INCLUDES__) #include #else #include #endif #pragma mark This file needs to compile on earlier versions of the OS, so please keep that in mind when editing it const AudioStreamBasicDescription CAStreamBasicDescription::sEmpty = { 0.0, 0, 0, 0, 0, 0, 0, 0, 0 }; CAStreamBasicDescription::CAStreamBasicDescription(double inSampleRate, UInt32 inFormatID, UInt32 inBytesPerPacket, UInt32 inFramesPerPacket, UInt32 inBytesPerFrame, UInt32 inChannelsPerFrame, UInt32 inBitsPerChannel, UInt32 inFormatFlags) { mSampleRate = inSampleRate; mFormatID = inFormatID; mBytesPerPacket = inBytesPerPacket; mFramesPerPacket = inFramesPerPacket; mBytesPerFrame = inBytesPerFrame; mChannelsPerFrame = inChannelsPerFrame; mBitsPerChannel = inBitsPerChannel; mFormatFlags = inFormatFlags; mReserved = 0; } void CAStreamBasicDescription::PrintFormat(FILE *f, const char *indent, const char *name) const { fprintf(f, "%s%s ", indent, name); char formatID[5]; *(UInt32 *)formatID = CFSwapInt32HostToBig(mFormatID); formatID[4] = '\0'; fprintf(f, "%2d ch, %6.0f Hz, '%-4.4s' (0x%08X) ", (int)NumberChannels(), mSampleRate, formatID, (int)mFormatFlags); if (mFormatID == kAudioFormatLinearPCM) { bool isInt = !(mFormatFlags & kLinearPCMFormatFlagIsFloat); int wordSize = SampleWordSize(); const char *endian = (wordSize > 1) ? ((mFormatFlags & kLinearPCMFormatFlagIsBigEndian) ? " big-endian" : " little-endian" ) : ""; const char *sign = isInt ? ((mFormatFlags & kLinearPCMFormatFlagIsSignedInteger) ? " signed" : " unsigned") : ""; const char *floatInt = isInt ? "integer" : "float"; char packed[32]; if (wordSize > 0 && PackednessIsSignificant()) { if (mFormatFlags & kLinearPCMFormatFlagIsPacked) sprintf(packed, "packed in %d bytes", wordSize); else sprintf(packed, "unpacked in %d bytes", wordSize); } else packed[0] = '\0'; const char *align = (wordSize > 0 && AlignmentIsSignificant()) ? ((mFormatFlags & kLinearPCMFormatFlagIsAlignedHigh) ? " high-aligned" : " low-aligned") : ""; const char *deinter = (mFormatFlags & kAudioFormatFlagIsNonInterleaved) ? ", deinterleaved" : ""; const char *commaSpace = (packed[0]!='\0') || (align[0]!='\0') ? ", " : ""; fprintf(f, "%d-bit%s%s %s%s%s%s%s\n", (int)mBitsPerChannel, endian, sign, floatInt, commaSpace, packed, align, deinter); } else if (mFormatID == 'alac') { // kAudioFormatAppleLossless int sourceBits = 0; switch (mFormatFlags) { case 1: // kAppleLosslessFormatFlag_16BitSourceData sourceBits = 16; break; case 2: // kAppleLosslessFormatFlag_20BitSourceData sourceBits = 20; break; case 3: // kAppleLosslessFormatFlag_24BitSourceData sourceBits = 24; break; case 4: // kAppleLosslessFormatFlag_32BitSourceData sourceBits = 32; break; } if (sourceBits) fprintf(f, "from %d-bit source, ", sourceBits); else fprintf(f, "from UNKNOWN source bit depth, "); fprintf(f, "%d frames/packet\n", (int)mFramesPerPacket); } else fprintf(f, "%d bits/channel, %d bytes/packet, %d frames/packet, %d bytes/frame\n", (int)mBitsPerChannel, (int)mBytesPerPacket, (int)mFramesPerPacket, (int)mBytesPerFrame); } void CAStreamBasicDescription::NormalizeLinearPCMFormat(AudioStreamBasicDescription& ioDescription) { // the only thing that changes is to make mixable linear PCM into the canonical linear PCM format if((ioDescription.mFormatID == kAudioFormatLinearPCM) && ((ioDescription.mFormatFlags & kIsNonMixableFlag) == 0)) { // the canonical linear PCM format is 32 bit native endian floats ioDescription.mFormatFlags = kAudioFormatFlagsNativeFloatPacked; ioDescription.mBytesPerPacket = sizeof(Float32) * ioDescription.mChannelsPerFrame; ioDescription.mFramesPerPacket = 1; ioDescription.mBytesPerFrame = sizeof(Float32) * ioDescription.mChannelsPerFrame; ioDescription.mBitsPerChannel = 8 * sizeof(Float32); } } void CAStreamBasicDescription::ResetFormat(AudioStreamBasicDescription& ioDescription) { ioDescription.mSampleRate = 0; ioDescription.mFormatID = 0; ioDescription.mBytesPerPacket = 0; ioDescription.mFramesPerPacket = 0; ioDescription.mBytesPerFrame = 0; ioDescription.mChannelsPerFrame = 0; ioDescription.mBitsPerChannel = 0; ioDescription.mFormatFlags = 0; } void CAStreamBasicDescription::FillOutFormat(AudioStreamBasicDescription& ioDescription, const AudioStreamBasicDescription& inTemplateDescription) { if(fiszero(ioDescription.mSampleRate)) { ioDescription.mSampleRate = inTemplateDescription.mSampleRate; } if(ioDescription.mFormatID == 0) { ioDescription.mFormatID = inTemplateDescription.mFormatID; } if(ioDescription.mFormatFlags == 0) { ioDescription.mFormatFlags = inTemplateDescription.mFormatFlags; } if(ioDescription.mBytesPerPacket == 0) { ioDescription.mBytesPerPacket = inTemplateDescription.mBytesPerPacket; } if(ioDescription.mFramesPerPacket == 0) { ioDescription.mFramesPerPacket = inTemplateDescription.mFramesPerPacket; } if(ioDescription.mBytesPerFrame == 0) { ioDescription.mBytesPerFrame = inTemplateDescription.mBytesPerFrame; } if(ioDescription.mChannelsPerFrame == 0) { ioDescription.mChannelsPerFrame = inTemplateDescription.mChannelsPerFrame; } if(ioDescription.mBitsPerChannel == 0) { ioDescription.mBitsPerChannel = inTemplateDescription.mBitsPerChannel; } } void CAStreamBasicDescription::GetSimpleName(const AudioStreamBasicDescription& inDescription, char* outName, bool inAbbreviate) { switch(inDescription.mFormatID) { case kAudioFormatLinearPCM: { const char* theEndianString = NULL; if((inDescription.mFormatFlags & kAudioFormatFlagIsBigEndian) != 0) { #if TARGET_RT_LITTLE_ENDIAN theEndianString = "Big Endian"; #endif } else { #if TARGET_RT_BIG_ENDIAN theEndianString = "Little Endian"; #endif } const char* theKindString = NULL; if((inDescription.mFormatFlags & kAudioFormatFlagIsFloat) != 0) { theKindString = (inAbbreviate ? "Float" : "Floating Point"); } else if((inDescription.mFormatFlags & kAudioFormatFlagIsSignedInteger) != 0) { theKindString = (inAbbreviate ? "SInt" : "Signed Integer"); } else { theKindString = (inAbbreviate ? "UInt" : "Unsigned Integer"); } const char* thePackingString = NULL; if((inDescription.mFormatFlags & kAudioFormatFlagIsPacked) == 0) { if((inDescription.mFormatFlags & kAudioFormatFlagIsAlignedHigh) != 0) { thePackingString = "High"; } else { thePackingString = "Low"; } } const char* theMixabilityString = NULL; if((inDescription.mFormatFlags & kIsNonMixableFlag) == 0) { theMixabilityString = "Mixable"; } else { theMixabilityString = "Unmixable"; } if(inAbbreviate) { if(theEndianString != NULL) { if(thePackingString != NULL) { sprintf(outName, "%s %d Ch %s %s %s%d/%s%d", theMixabilityString, (int)inDescription.mChannelsPerFrame, theEndianString, thePackingString, theKindString, (int)inDescription.mBitsPerChannel, theKindString, (int)(inDescription.mBytesPerFrame / inDescription.mChannelsPerFrame) * 8); } else { sprintf(outName, "%s %d Ch %s %s%d", theMixabilityString, (int)inDescription.mChannelsPerFrame, theEndianString, theKindString, (int)inDescription.mBitsPerChannel); } } else { if(thePackingString != NULL) { sprintf(outName, "%s %d Ch %s %s%d/%s%d", theMixabilityString, (int)inDescription.mChannelsPerFrame, thePackingString, theKindString, (int)inDescription.mBitsPerChannel, theKindString, (int)((inDescription.mBytesPerFrame / inDescription.mChannelsPerFrame) * 8)); } else { sprintf(outName, "%s %d Ch %s%d", theMixabilityString, (int)inDescription.mChannelsPerFrame, theKindString, (int)inDescription.mBitsPerChannel); } } } else { if(theEndianString != NULL) { if(thePackingString != NULL) { sprintf(outName, "%s %d Channel %d Bit %s %s Aligned %s in %d Bits", theMixabilityString, (int)inDescription.mChannelsPerFrame, (int)inDescription.mBitsPerChannel, theEndianString, theKindString, thePackingString, (int)(inDescription.mBytesPerFrame / inDescription.mChannelsPerFrame) * 8); } else { sprintf(outName, "%s %d Channel %d Bit %s %s", theMixabilityString, (int)inDescription.mChannelsPerFrame, (int)inDescription.mBitsPerChannel, theEndianString, theKindString); } } else { if(thePackingString != NULL) { sprintf(outName, "%s %d Channel %d Bit %s Aligned %s in %d Bits", theMixabilityString, (int)inDescription.mChannelsPerFrame, (int)inDescription.mBitsPerChannel, theKindString, thePackingString, (int)(inDescription.mBytesPerFrame / inDescription.mChannelsPerFrame) * 8); } else { sprintf(outName, "%s %d Channel %d Bit %s", theMixabilityString, (int)inDescription.mChannelsPerFrame, (int)inDescription.mBitsPerChannel, theKindString); } } } } break; case kAudioFormatAC3: strcpy(outName, "AC-3"); break; case kAudioFormat60958AC3: strcpy(outName, "AC-3 for SPDIF"); break; default: { char* the4CCString = (char*)&inDescription.mFormatID; outName[0] = the4CCString[0]; outName[1] = the4CCString[1]; outName[2] = the4CCString[2]; outName[3] = the4CCString[3]; outName[4] = 0; } break; }; } #if CoreAudio_Debug #include "CALogMacros.h" void CAStreamBasicDescription::PrintToLog(const AudioStreamBasicDescription& inDesc) { PrintFloat (" Sample Rate: ", inDesc.mSampleRate); Print4CharCode (" Format ID: ", inDesc.mFormatID); PrintHex (" Format Flags: ", inDesc.mFormatFlags); PrintInt (" Bytes per Packet: ", inDesc.mBytesPerPacket); PrintInt (" Frames per Packet: ", inDesc.mFramesPerPacket); PrintInt (" Bytes per Frame: ", inDesc.mBytesPerFrame); PrintInt (" Channels per Frame: ", inDesc.mChannelsPerFrame); PrintInt (" Bits per Channel: ", inDesc.mBitsPerChannel); } #endif bool operator<(const AudioStreamBasicDescription& x, const AudioStreamBasicDescription& y) { bool theAnswer = false; bool isDone = false; // note that if either side is 0, that field is skipped // format ID is the first order sort if((!isDone) && ((x.mFormatID != 0) && (y.mFormatID != 0))) { if(x.mFormatID != y.mFormatID) { // formats are sorted numerically except that linear // PCM is always first if(x.mFormatID == kAudioFormatLinearPCM) { theAnswer = true; } else if(y.mFormatID == kAudioFormatLinearPCM) { theAnswer = false; } else { theAnswer = x.mFormatID < y.mFormatID; } isDone = true; } } // mixable is always better than non-mixable for linear PCM and should be the second order sort item if((!isDone) && ((x.mFormatID == kAudioFormatLinearPCM) && (y.mFormatID == kAudioFormatLinearPCM))) { if(((x.mFormatFlags & kIsNonMixableFlag) == 0) && ((y.mFormatFlags & kIsNonMixableFlag) != 0)) { theAnswer = true; isDone = true; } else if(((x.mFormatFlags & kIsNonMixableFlag) != 0) && ((y.mFormatFlags & kIsNonMixableFlag) == 0)) { theAnswer = false; isDone = true; } } // floating point vs integer for linear PCM only if((!isDone) && ((x.mFormatID == kAudioFormatLinearPCM) && (y.mFormatID == kAudioFormatLinearPCM))) { if((x.mFormatFlags & kAudioFormatFlagIsFloat) != (y.mFormatFlags & kAudioFormatFlagIsFloat)) { // floating point is better than integer theAnswer = y.mFormatFlags & kAudioFormatFlagIsFloat; isDone = true; } } // bit depth if((!isDone) && ((x.mBitsPerChannel != 0) && (y.mBitsPerChannel != 0))) { if(x.mBitsPerChannel != y.mBitsPerChannel) { // deeper bit depths are higher quality theAnswer = x.mBitsPerChannel < y.mBitsPerChannel; isDone = true; } } // sample rate if((!isDone) && fnonzero(x.mSampleRate) && fnonzero(y.mSampleRate)) { if(fnotequal(x.mSampleRate, y.mSampleRate)) { // higher sample rates are higher quality theAnswer = x.mSampleRate < y.mSampleRate; isDone = true; } } // number of channels if((!isDone) && ((x.mChannelsPerFrame != 0) && (y.mChannelsPerFrame != 0))) { if(x.mChannelsPerFrame != y.mChannelsPerFrame) { // more channels is higher quality theAnswer = x.mChannelsPerFrame < y.mChannelsPerFrame; isDone = true; } } return theAnswer; } static bool MatchFormatFlags(const AudioStreamBasicDescription& x, const AudioStreamBasicDescription& y) { UInt32 xFlags = x.mFormatFlags; UInt32 yFlags = y.mFormatFlags; // match wildcards if (x.mFormatID == 0 || y.mFormatID == 0 || xFlags == 0 || yFlags == 0) return true; if (x.mFormatID == kAudioFormatLinearPCM) { // knock off the all clear flag xFlags = xFlags & ~kAudioFormatFlagsAreAllClear; yFlags = yFlags & ~kAudioFormatFlagsAreAllClear; // if both kAudioFormatFlagIsPacked bits are set, then we don't care about the kAudioFormatFlagIsAlignedHigh bit. if (xFlags & yFlags & kAudioFormatFlagIsPacked) { xFlags = xFlags & ~kAudioFormatFlagIsAlignedHigh; yFlags = yFlags & ~kAudioFormatFlagIsAlignedHigh; } // if both kAudioFormatFlagIsFloat bits are set, then we don't care about the kAudioFormatFlagIsSignedInteger bit. if (xFlags & yFlags & kAudioFormatFlagIsFloat) { xFlags = xFlags & ~kAudioFormatFlagIsSignedInteger; yFlags = yFlags & ~kAudioFormatFlagIsSignedInteger; } // if the bit depth is 8 bits or less and the format is packed, we don't care about endianness if((x.mBitsPerChannel <= 8) && ((xFlags & kAudioFormatFlagIsPacked) == kAudioFormatFlagIsPacked)) { xFlags = xFlags & ~kAudioFormatFlagIsBigEndian; } if((y.mBitsPerChannel <= 8) && ((yFlags & kAudioFormatFlagIsPacked) == kAudioFormatFlagIsPacked)) { yFlags = yFlags & ~kAudioFormatFlagIsBigEndian; } // if the number of channels is 0 or 1, we don't care about non-interleavedness if (x.mChannelsPerFrame <= 1 && y.mChannelsPerFrame <= 1) { xFlags &= ~kLinearPCMFormatFlagIsNonInterleaved; yFlags &= ~kLinearPCMFormatFlagIsNonInterleaved; } } return xFlags == yFlags; } bool operator==(const AudioStreamBasicDescription& x, const AudioStreamBasicDescription& y) { // the semantics for equality are: // 1) Values must match exactly // 2) wildcard's are ignored in the comparison #define MATCH(name) ((x.name) == 0 || (y.name) == 0 || (x.name) == (y.name)) return // check the sample rate (fiszero(x.mSampleRate) || fiszero(y.mSampleRate) || fequal(x.mSampleRate, y.mSampleRate)) // check the format ids && MATCH(mFormatID) // check the format flags && MatchFormatFlags(x, y) // check the bytes per packet && MATCH(mBytesPerPacket) // check the frames per packet && MATCH(mFramesPerPacket) // check the bytes per frame && MATCH(mBytesPerFrame) // check the channels per frame && MATCH(mChannelsPerFrame) // check the channels per frame && MATCH(mBitsPerChannel) ; } bool CAStreamBasicDescription::IsEqual(const AudioStreamBasicDescription &other, bool interpretingWildcards) const { if (interpretingWildcards) return *this == other; return memcmp(this, &other, offsetof(AudioStreamBasicDescription, mReserved)) == 0; } bool SanityCheck(const AudioStreamBasicDescription& x) { return (x.mSampleRate >= 0.); }