Design and implement discs

This commit is contained in:
Matthias Neeracher 2020-12-30 06:14:25 +01:00
parent 22e828f079
commit 087558904b
2 changed files with 1389 additions and 0 deletions

1296
Designs.ezdraw Normal file

File diff suppressed because it is too large Load Diff

93
honeyrack.py Executable file
View File

@ -0,0 +1,93 @@
#!/usr/bin/env python3
#
# honeyrack.py - Generate laser cut parts for honeycomb style shelf
#
import argparse
import re
import math
import sys
parser = argparse.ArgumentParser('Generate parts for honeycomb style shelf')
parser.add_argument('x', type=int, help='Number of cells in bottom row')
parser.add_argument('y', type=int, default=3, help='Number of rows')
parser.add_argument('--side', default='5cm', help='Length of side')
parser.add_argument('--depth', default='10cm', help='Depth')
parser.add_argument('--tab', default='1cm', help='Length of connective tabs')
parser.add_argument('--kerf', default='.2mm', help='Amount of kerf adjustment')
parser.add_argument('--fringe', default='1cm', help='Space around tabs')
parser.add_argument('--stem', default='2cm', help='Width of connectors')
parser.add_argument('--disc', default='2cm', help='Radius of auxiliary discs')
parser.add_argument('--num_discs', default='2', help='Number of auxiliary discs')
parser.add_argument('--thickness', default='.125in', help='Material thickness')
args = parser.parse_args()
DIMENSION = re.compile(r'(\-?\d*(?:\.\d*)?)\s*(cm|mm|m|in)')
def to_mm(length):
m = DIMENSION.fullmatch(length)
if m == None:
abort("{} should be a length with an unit (m, cm, mm, in)".format(length))
v = float(m.group(1))
u = m.group(2)
if u == 'mm':
return v
elif u == 'cm':
return v*10
elif u == 'm':
return v*1000
elif u == 'in':
return v*25.4
args.side = to_mm(args.side)
args.depth = to_mm(args.depth)
args.tab = to_mm(args.tab)
args.kerf = to_mm(args.kerf)
args.fringe = to_mm(args.fringe)
args.stem = to_mm(args.stem)
args.disc = to_mm(args.disc)
args.thickness = to_mm(args.thickness)
def compute_notch():
global args
if 'notch' in args:
return
depth = args.disc - (args.thickness+args.kerf)*0.25*math.sqrt(3) # Half of the height of equilateral triangle
args.notch = 0.5*(depth-args.kerf)
def disc(x, y):
compute_notch()
global args
cut = args.thickness+args.kerf
cone = math.asin(0.5*cut/args.disc)
cx = x+args.disc
cy = y+args.disc
t0 = -cone
x0 = cx+math.cos(t0)*args.disc
y0 = cy-math.sin(t0)*args.disc
print('<path fill="none" stroke="red" d="M {},{} h {} v {} h {} '.format(x0, y0, -args.notch, -cut, args.notch))
r120 = (2.0/3.0)*math.pi
t1 = r120-cone
x1 = cx+math.cos(t1)*args.disc
y1 = cy-math.sin(t1)*args.disc
dx1 = args.notch*math.cos(r120)
dy1 = args.notch*math.sin(r120)
dx1a = cut*math.cos(r120+0.5*math.pi)
dy1a = cut*math.sin(r120+0.5*math.pi)
print('A {},{} 0,0,0 {},{} l {},{} {},{} {},{} '.format(args.disc, args.disc, x1,y1, -dx1,dy1, dx1a,-dy1a, dx1,-dy1))
r240 = (4.0/3.0)*math.pi
t2 = r240-cone
x2 = cx+math.cos(t2)*args.disc
y2 = cy-math.sin(t2)*args.disc
dx2 = args.notch*math.cos(r240)
dy2 = args.notch*math.sin(r240)
dx2a = cut*math.cos(r240+0.5*math.pi)
dy2a = cut*math.sin(r240+0.5*math.pi)
print('A {},{} 0,0,0 {},{} l {},{} {},{} {},{} '.format(args.disc, args.disc, x2,y2, -dx2,dy2, dx2a,-dy2a, dx2,-dy2))
print('A {},{} 0,0,0 {},{}" />'.format(args.disc, args.disc, x0, y0))
print('<svg viewBox="0 0 500 500" width="500mm" height="500mm" xmlns="http://www.w3.org/2000/svg">')
disc(50, 50)
print('</svg>')