#!/usr/bin/env python3 import math import sys import argparse import svgturtle parser = argparse.ArgumentParser(description='Generate a hexagonal battery case') parser.add_argument('--dimension', default=5, type=int, help='Grid dimension') parser.add_argument('--height', type=float, help='Height of battery') parser.add_argument('--hole', default='AA', help='Hole diameter (mm or A, AA, AAA)') parser.add_argument('--kerf', default=.1, type=float, help='Kerf') parser.add_argument('--horizontal-finger', default=10.0, type=float, help='Width of horizontal fingers') parser.add_argument('--vertical-finger', default=5.0, type=float, help='Width of vertical fingers') parser.add_argument('--padding', default=1.5, type=float, help='Padding around holes') parser.add_argument('--outside-padding', default=2, type=float, help='Extra padding between holes and wall') parser.add_argument('--thickness', default=3.0, type=float, help='Thickness of material') parser.add_argument('--lid', default=0.2, type=float, help='How much extra play to give the lid') args = parser.parse_args() assert (args.dimension % 2) == 1 BATTERY = { 'AAA': [10.5, 44.5], 'AA': [14.5, 50.5], 'C': [26.2, 50.0], 'D': [34.2, 61.5], } if args.hole in BATTERY: dim = BATTERY[args.hole] args.hole = dim[0] if args.height == None: args.height = dim[1] else: args.hole = float(args.hole) assert(args.height != None) GRID = args.hole+args.padding RADIUS = args.hole/2 DIMX = 2*(args.dimension+1)*GRID DIMY = 2*(args.dimension+1)*GRID PI3 = math.pi/3 def draw_grid(cx, cy): for row in range(-int(args.dimension/2), int((args.dimension+1)/2)): cyr = cy+GRID*row*math.sin(PI3) num_col = args.dimension-abs(row) cxr = cx-.5*GRID*(num_col-1.0) for col in range(num_col): print('' % (cxr+col*GRID, cyr, RADIUS)) def draw_plane(cx, cy, interior=False): radius = GRID*args.dimension*0.5+args.outside_padding if not interior: radius += args.thickness turtle = svgturtle.SvgTurtle(cx, cy) turtle.penup() turtle.forward(radius) turtle.right(120) turtle.pendown() if interior: leg = (radius-args.horizontal_finger-args.kerf)/2 for side in range(6): turtle.forward(leg) turtle.left(90) turtle.forward(args.thickness) turtle.right(90) turtle.forward(args.horizontal_finger+args.kerf) turtle.right(90) turtle.forward(args.thickness) turtle.left(90) turtle.forward(leg) turtle.right(60) else: num_fingers = int(radius/args.horizontal_finger/2) leg = (radius-(2*num_fingers-1)*args.horizontal_finger-args.kerf)/2 for side in range(6): turtle.forward(leg) for finger in range(num_fingers): turtle.right(90) turtle.forward(args.thickness) turtle.left(90) turtle.forward(args.horizontal_finger+args.kerf) turtle.left(90) turtle.forward(args.thickness) turtle.right(90) turtle.forward(leg if finger == num_fingers-1 else args.horizontal_finger-args.kerf) turtle.right(60) print('' % turtle.to_s()) print('' % (DIMX, DIMY, DIMX, DIMY)) draw_grid(GRID*(0.5*args.dimension+0.5), GRID*(0.5*args.dimension+1)) draw_grid(GRID*(1.5*args.dimension+1.5), GRID*(0.5*args.dimension+1)) draw_plane(GRID*(0.5*args.dimension+0.5), GRID*(0.5*args.dimension+1), True) draw_plane(GRID*(1.5*args.dimension+1.5), GRID*(0.5*args.dimension+1), True) draw_plane(GRID*(0.5*args.dimension+0.5), GRID*(1.5*args.dimension+1)) draw_plane(GRID*(1.5*args.dimension+1.5), GRID*(1.5*args.dimension+1)) print('')