ill-tempered-seabass/battery-case-generator.py

300 lines
11 KiB
Python
Executable File

#!/usr/bin/env python3
import math
import sys
import argparse
import svgturtle
parser = argparse.ArgumentParser(description='Generate a hexagonal battery case')
parser.add_argument('--dimension', default=5, type=int, help='Grid dimension')
parser.add_argument('--height', type=float, help='Height of battery')
parser.add_argument('--hole', default='AA', help='Hole diameter (mm or A, AA, AAA)')
parser.add_argument('--kerf', default=.1, type=float, help='Kerf')
parser.add_argument('--corner-length', default=4, help='Length of stretch corner in material thicknesses')
parser.add_argument('--stretch', default=1.05, type=float, help='Reduction factor of stretch material')
parser.add_argument('--horizontal-finger', default=5.0, type=float, help='Width of horizontal fingers')
parser.add_argument('--vertical-finger', default=15.0, type=float, help='Width of vertical fingers')
parser.add_argument('--padding', default=1.5, type=float, help='Padding around holes')
parser.add_argument('--outside-padding', default=4.0, type=float, help='Extra padding between holes and wall')
parser.add_argument('--extra-height', default=2.0, type=float, help='Extra vertical space')
parser.add_argument('--thickness', default=3.0, type=float, help='Thickness of material')
parser.add_argument('--lid', default=0.2, type=float, help='How much extra play to give the lid')
parser.add_argument('--tooth', default=0.8, type=float, help='How much to round the edges of the teeth')
parser.add_argument('--verbose', action='store_true', help='Print computed parameter values')
args = parser.parse_args()
assert (args.dimension % 2) == 1
BATTERY = {
'AAA': [10.5, 44.5],
'AA': [14.5, 50.5],
'C': [26.2, 50.0],
'D': [34.2, 61.5],
}
if args.hole in BATTERY:
dim = BATTERY[args.hole]
args.hole = dim[0]
if args.height == None:
args.height = dim[1]
else:
args.hole = float(args.hole)
assert(args.height != None)
args.kerf2 = args.kerf/2
args.grid = args.hole+args.padding
args.radius = args.hole/2
args.corner = args.corner_length*args.thickness
args.corner_s = args.corner*args.stretch
args.corner_radius = 3*args.corner_s/math.pi
args.plug_radius = args.corner_radius-args.thickness
args.corner_inset = args.corner_s*math.sqrt(3)/math.pi
args.plug_inset = args.plug_radius/math.sqrt(3)
args.interior_edge = args.grid*args.dimension*0.5+args.outside_padding
args.plug_edge = args.interior_edge-args.thickness
args.exterior_edge = args.interior_edge+2.0*args.thickness
args.interior_leg = (args.interior_edge-args.horizontal_finger-args.kerf)/2-args.corner_inset
finger_length = args.interior_edge-2.0*args.corner_inset
args.n_hor_fingers = max(int(finger_length/args.horizontal_finger/2), 1)
args.exterior_leg = (finger_length-(2*args.n_hor_fingers-1)*args.horizontal_finger+args.kerf)/2
args.wall_leg = (args.interior_edge-args.corner-(2*args.n_hor_fingers-1)*args.horizontal_finger+args.kerf)/2
args.exterior_slot = (args.interior_edge-args.horizontal_finger+args.kerf)/2
args.n_ver_fingers = int((args.height+args.extra_height)/args.vertical_finger)
top_slot = args.extra_height+0.5*args.height
args.slots = [top_slot, top_slot+2*args.thickness]
if args.verbose:
print(args, file=sys.stderr)
BOX = 2.0*args.exterior_edge+5.0
DIMX = 3.0*BOX
DIMY = 2.0*BOX+args.height+args.extra_height+2.0*args.thickness+5.0
PI3 = math.pi/3
HOLES = ''
SHAPES = ''
MARKS = ''
def draw_grid(cx, cy):
global HOLES
for row in range(-int(args.dimension/2), int((args.dimension+1)/2)):
cyr = cy+args.grid*row*math.sin(PI3)
num_col = args.dimension-abs(row)
cxr = cx-.5*args.grid*(num_col-1.0)
for col in range(num_col):
HOLES += '<circle cx="%.2f" cy="%.2f" r="%.2f"/>\n' % (cxr+col*args.grid, cyr, args.radius)
def draw_plane(cx, cy, layer):
global HOLES, SHAPES, MARKS
if layer=='interior':
edge = args.interior_edge
elif layer=='plug' or layer=='plug_mark':
edge = args.plug_edge
else:
edge = args.exterior_edge
turtle = svgturtle.SvgTurtle(cx, cy)
turtle.penup()
turtle.forward(edge)
turtle.right(120)
if layer=='interior':
turtle.forward(args.corner_inset)
turtle.pendown()
for side in range(5):
turtle.forward(args.interior_leg)
turtle.left(90)
turtle.forward(args.thickness)
turtle.right(90)
turtle.forward(args.horizontal_finger+args.kerf)
turtle.right(90)
turtle.forward(args.thickness)
turtle.left(90)
turtle.forward(args.interior_leg)
turtle.circle(-args.corner_radius, 60)
turtle.forward(edge-2.0*args.corner_inset)
turtle.circle(-args.corner_radius, 60)
elif layer=='plug' or layer=='plug_mark':
turtle.forward(args.plug_inset)
turtle.pendown()
for side in range(6):
turtle.forward(edge-2.0*args.plug_inset)
turtle.circle(-args.plug_radius, 60)
else:
turtle.pendown()
for side in range(6):
turtle.forward(edge)
turtle.right(60)
if layer=='plug':
HOLES += '<path d="%s"/>\n' % turtle.to_s()
elif layer=='plug_mark':
MARKS += '<path d="%s"/>\n' % turtle.to_s()
else:
SHAPES += '<path d="%s"/>\n' % turtle.to_s()
turtle.reset()
turtle.penup()
if layer=='bottom' or layer=='rim':
turtle.forward(args.interior_edge)
turtle.right(120)
turtle.forward(args.corner_inset)
for side in range(5):
for finger in range(args.n_hor_fingers):
turtle.forward(args.exterior_leg if finger == 0 else args.horizontal_finger+args.kerf)
turtle.pendown()
turtle.left(90)
turtle.forward(args.thickness)
turtle.right(90)
turtle.forward(args.horizontal_finger-args.kerf)
turtle.right(90)
turtle.forward(args.thickness)
turtle.right(90)
turtle.forward(args.horizontal_finger-args.kerf)
turtle.penup()
turtle.right(180)
turtle.forward(args.horizontal_finger-args.kerf)
turtle.forward(args.exterior_leg)
turtle.pendown()
turtle.left(90)
turtle.forward(args.thickness)
turtle.right(90)
turtle.circle(-args.corner_radius-args.thickness, 60)
turtle.right(90)
turtle.forward(args.thickness)
turtle.right(90)
turtle.circle(args.corner_radius, 60)
turtle.penup()
turtle.right(180)
turtle.circle(-args.corner_radius, 60)
turtle.forward(args.interior_edge-2*args.corner_inset)
turtle.pendown()
turtle.left(90)
turtle.forward(args.thickness)
turtle.right(90)
turtle.circle(-args.corner_radius-args.thickness, 60)
turtle.right(90)
turtle.forward(args.thickness)
turtle.right(90)
turtle.circle(args.corner_radius, 60)
HOLES += '<path d="%s"/>\n' % turtle.to_s()
def draw_flex(t, h):
global HOLES
turtle = svgturtle.SvgTurtle(t.x, t.y)
al = h/3.0-args.thickness
bl = (h-args.thickness)/3.0-args.thickness
nx = int(args.corner/1.5)
dx = args.corner/(2*nx-1)
for stripe in range(nx):
turtle.right(90)
turtle.forward(0.5*al)
turtle.penup()
turtle.forward(args.thickness)
turtle.pendown()
turtle.forward(al)
turtle.penup()
turtle.forward(args.thickness)
turtle.pendown()
turtle.forward(al)
turtle.penup()
turtle.forward(args.thickness)
turtle.pendown()
turtle.forward(0.5*al)
turtle.penup()
turtle.left(90)
turtle.forward(dx)
turtle.left(90)
turtle.forward(args.thickness)
turtle.pendown()
turtle.forward(bl)
turtle.penup()
turtle.forward(args.thickness)
turtle.pendown()
turtle.forward(bl)
turtle.penup()
turtle.forward(args.thickness)
turtle.pendown()
turtle.forward(bl)
turtle.penup()
turtle.forward(args.thickness)
turtle.right(90)
turtle.forward(dx)
turtle.pendown()
HOLES += '<path d="%s"/>\n' % turtle.to_s()
def draw_case_h(turtle, h, top):
turtle.forward(0.5*args.interior_edge-0.5*args.corner)
for side in range(6):
turtle.left(90)
turtle.forward(args.thickness)
turtle.right(90)
if top:
draw_flex(turtle, h+2*args.thickness)
turtle.forward(args.corner)
turtle.right(90)
turtle.forward(args.thickness)
turtle.left(90)
if side == 5:
break
turtle.forward(args.wall_leg-0.5*args.kerf)
for finger in range(args.n_hor_fingers):
if finger > 0:
turtle.forward(args.horizontal_finger-args.kerf)
turtle.left(90)
turtle.forward(args.thickness)
turtle.right(90)
turtle.forward(args.horizontal_finger+args.kerf)
turtle.right(90)
turtle.forward(args.thickness)
turtle.left(90)
turtle.forward(args.wall_leg-0.5*args.kerf)
turtle.forward(0.5*args.interior_edge-0.5*args.corner)
def draw_case_v(turtle, h):
ey = turtle.y+h
leg = (h-(args.n_ver_fingers-0.66)*args.vertical_finger)/2.0
slope = args.vertical_finger/math.sqrt(18)
turtle.forward(leg)
for finger in range(args.n_ver_fingers):
ty = ey if finger==args.n_ver_fingers-1 else turtle.y+args.vertical_finger
turtle.circle(args.tooth, 135)
turtle.forward(slope)
turtle.circle(-args.tooth, 135)
turtle.forward(0.66*args.vertical_finger)
turtle.circle(-args.tooth, 135)
turtle.forward(slope)
turtle.circle(args.tooth, 135)
turtle.forward(ty-turtle.y)
def draw_case(x0, y0, h, slots):
global HOLES, SHAPES
turtle = svgturtle.SvgTurtle(x0, y0+args.thickness)
draw_case_h(turtle, h, True)
turtle.right(90)
draw_case_v(turtle, h)
turtle.right(90)
draw_case_h(turtle, h, False)
turtle.penup()
turtle.left(90)
turtle.back(h)
turtle.pendown()
draw_case_v(turtle, h)
SHAPES += '<path d="%s"/>\n' % turtle.to_s()
for slot in slots:
for side in range(5):
x = x0+(side+.5)*args.interior_edge+args.exterior_slot
y = y0+slot
w = args.horizontal_finger-args.kerf
h = args.thickness-args.kerf
HOLES += '<rect x="%.2f" y="%.2f" width="%.2f" height="%.2f"/>\n' % (x, y, w, h)
print('<svg viewBox="0 0 %.2f %.2f" width="%.2fmm" height="%.2fmm" stroke-width="0.1" xmlns="http://www.w3.org/2000/svg">' % (DIMX, DIMY, DIMX, DIMY))
draw_grid(0.5*BOX, 0.5*BOX)
draw_plane(0.5*BOX, 0.5*BOX, 'interior')
draw_grid(1.5*BOX, 0.5*BOX)
draw_plane(1.5*BOX, 0.5*BOX, 'interior')
draw_plane(0.5*BOX, 1.5*BOX, 'bottom')
draw_plane(1.5*BOX, 1.5*BOX, 'rim')
draw_plane(1.5*BOX, 1.5*BOX, 'plug')
draw_plane(2.5*BOX, 1.5*BOX, 'lid')
draw_plane(2.5*BOX, 1.5*BOX, 'plug_mark')
draw_case(0.05*args.grid*args.dimension, 2.0*BOX, args.height+args.extra_height, args.slots)
print('<g fill="none" stroke="black">', SHAPES, '</g>', '<g fill="none" stroke="red">', HOLES, '</g>', '<g fill="none" stroke="blue">', MARKS, '</g>', sep='\n')
print('</svg>')